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Abstract
Based on the thermal field dynamics, by introducing the thermal entangled
state we find a new approach for converting density operators’ quantum master
equations into c-number equations. This approach, in many cases, is concise
and convenient for deriving the solutions of these equations,because the thermal
entangled states possess favourable properties.

PACS numbers: 03.65.Ud, 02.20.−a, 05.30.−d, 42.50.Dv

1. Introduction

In nature, most systems of interest are coupled to heat reservoirs, so damping and/or losses
may be included in the quantum mechanical equation of motion. In the Schrödinger picture,
the fundamental problem is to determine how the state, or the density operator, of the system
evolves in time. The equation of motion for the density operators has to be solved as
a function of time. Such an equation is known as the master equation for the system
from which time evolution of the expectation values of system operators may be directly
deduced. Using the various quasi-probability representations [1–14] (P-representation,
Q-representation, complex P-representation, Wigner functions, etc) for the density operators,
quantum master equations are converted into corresponding c-number equations. Each of
these quasi-probability representations has its own advantages and shortcomings. In this
work we introduce a completely new approach for converting operator master equations into
c-number equations in terms of the thermal entangled state representations. As one can see
later, the converting processes in many cases are quite direct and concise and the solutions to
the new c-number equations are easily derived. Our entangled state representations have been
constructed in [15, 16], based on Takahashi–Umezawa thermal field dynamics (TFD) [17].

The work is arranged as follows. In section 2, we briefly review the two thermal state
representations and their properties in the context of TFD. One is the coherent thermal state
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〈η| [15], and the other is the thermal excitation (and de-excitation) state [16]. In section 3,
we convert the master equation of density operator ρ into a c-number equation by projecting
the state ρ|η = 0〉 onto the 〈η| representation. By virtue of the well-behaved properties of 〈η|,
we show that the converting procedures are straightforward and the forms of the c-number
equations are neater. Moreover, in many cases these c-number equations are more or less easily
solved, and the physical meaning of the solutions become clear. In section 4, we demonstrate
how to extract ρ from the solution 〈η|ρ〉.

2. The thermal entangled state

The main point of TFD of Takahashi and Umezawa [17] lies in converting the evaluation of
ensemble average at nonzero temperature into the equivalent expectation value with a pure
state. This worthwhile convenience is at the expense of introducing a fictitious field (or a
so-called tilde-conjugate field). Thus every state |n〉 in the original real field space H is
accompanied by a corresponding state |ñ〉 in H̃. A similar rule holds for the operators: every
operator a acting on H has an image acting on H̃. At finite temperature T the thermal vacuum
|0(β)〉 (β = 1

kT
, k is the Boltzmann constant) is defined by the requirement that the vacuum

expectation value agrees with the statistical average, i.e.

〈0(β)|A|0(β)〉 = Tr(A e−βH )/Tr(e−βH ) (1)

where H is the Hamiltonian. For the ensemble of free bosons with Hamiltonian H0 = ωa†a,

the thermal vacuum state |0(β)〉 is

|0(β)〉 = sech θ exp[a†ã† tanh θ ]|0, 0̃〉 tanh θ = exp

(
− h̄ω

2kT

)
(2)

where the vacuum state |0, 0̃〉 is annihilated by either a or ã, tanh θ is determined by comparing
the Bose–Einstein distribution

n = [exp(ωh̄/KT ) − 1]−1 (3)

with the expectation value of the thermalized photon number operator 〈0(β)|a†a|0(β)〉. The
relationship between TFD and the squeezed state theory is discussed in [18]. At ultimate high
temperature,

|0(β)〉|T→∞ → exp(a†ã†)|0, 0̃〉 =
∞∑
n

|n, ñ〉 ≡ |I 〉. (4)

2.1. The coherent thermal state

Based on |I 〉 in [15] we have introduced the coherent thermal state (CTS) |η〉,
|η〉 = exp

(− 1
2 |η|2 + ηa† − η∗ã† + a†ã†) |0, 0̃〉 η = η1 + iη2 |η = 0〉 = |I 〉. (5)

By respectively operating a and ã on |η〉, we have

(a − ã†)|η〉 = η|η〉 (ã − a†)|η〉 = −η∗|η〉 (6)

so |η〉 is the common eigenvector of (a − ã†) and (ã − a†). From

〈η|(a† − ã) = η∗〈η| 〈η|(ã† − a) = −η〈η| (7)

we get

〈η′(a† − ã)|η〉 = η′∗〈η′|η〉 = η∗〈η′|η〉 〈η′(a − ã†)|η〉 = η′〈η′|η〉 = η〈η′|η〉
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which leads to the orthonormal property

〈η′|η〉 = πδ(η′ − η)δ(η′∗ − η∗). (8)

Although the state vector |η〉 is not normalizable in Hilbert space, it can be defined
mathematically by means of the rigged Hilbert space in the same way the Dirac is
mathematically defined by the unnormalizable eigenstates of position and momentum
operators. The completeness relation of |η〉 has been proved in [15],∫

d2η

π
|η〉〈η| = 1. (9)

It then follows from (6) and η = |η| eiϕ that√
a − ã†

a† − ã
|η〉 = eiϕ |η〉 (a − ã†)(a† − ã)|η〉 = |η|2|η〉. (10)

Owing to [a − ã†, a† − ã] = 0, they can reside in the same square root. Equation (10) shows
that the phase eiϕ and amplitude |η| can be determined at the same time; this contradicts the
usual concept that phase and amplitude are not compatible, for example, corresponding to a
coherent states |z = |z| eiθ〉, a|z〉 = |z| eiθ |z〉, 〈z|a†a|z〉 = |z|2. The operator corresponding
to the phase eiθ is [19, 20]

êiθ = 1√
aa†

a

and the commutative relation

[êiθ , a†a] = êiθ

indicates that the phase and amplitude cannot be determined at the same time. But now we
have √

a − ã†

a† − ã
, (a − ã†)(a† − ã)

 = 0

so |η = |η|eiϕ〉 might be useful for tackling some density operator equations when the phase
and amplitude operators are included.

2.2. Excitation–de-excitation state [16]

It is remarkable that the |η〉 state obeys the following equation:

(a†a − ã†ã)|η〉 = (a†η + ã†η∗) e− 1
2 |η|2+ηa†−η∗ ã†+a†ã† |00〉 = −i

∂

∂ϕ
|η〉. (11)

Recall in the original Fock space, the number operator N = a†a acting on the phase state |eiθ 〉
yields

N |eiθ 〉 = −i
∂

∂θ
|eiθ 〉 (12)

where [20]

|eiθ 〉 =
∞∑

n=0

|n〉 einθ . (13)
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|n〉 = 1√
n!

a†n|0〉 is the eigenstate of N. Comparing (11) with (12) and by analogy with (13),
we guess

|η〉 =
∞∑

E=−∞
|E, |η|〉 eiϕE (14)

where E is an integer. The inverse transformation of (14) is

|E, |η|〉 =
∫ 2π

0

dϕ

2π
|η = |η| eiϕ〉 e−iEϕ. (15)

In fact, from (15) we see that |E, |η|〉 is indeed the eigenstate of (a†a − ã†ã),

(a†a − ã†ã)|E, |η|〉 =
∫ 2π

0

dϕ

2π

[(
−i

∂

∂ϕ

)
|η = |η| eiϕ〉

]
e−iEϕ = E|E, |η|〉.

On the other hand, from (15) we also have

(a − ã†)(a† − ã)|E, |η|〉 = |η|2|E, |η|〉. (16)

Equations (15) and (16) coincide with the commutator

[(a†a − ã†ã), (a − ã†)(a† − ã)] = 0.

3. Converting master equations into c-number equations by virtue of the 〈η|
representation

Let the system’s Hamiltonian be H and the density operator be ρ(a, a†). The system is
coupled to a reservoir described by the Hamiltonian HR; a weak interaction V exists between
them. To the second order in the perturbation the evolution equation of the density operator is
[1, 2, 5]

dρ

dt
= − 1

h̄2

∫ t

0
dt1 TrR[V (t), [V (t1), ρR ⊗ ρ(t)]] (17)

where TrR means the trace over the reservoir variables. In general, there are various ways to
convert this operator equation into a c-number equation. Here we use the 〈η| representation
and the |I 〉 = |η = 0〉 state and recast equation (17) into the form

〈η|dρ

dt
|I 〉 = d

dt
〈η|ρ〉 = 1

h̄2

∫ t

0
dt1〈η| TrR[V (t), [V (t1), ρR ⊗ ρ(t)]]|I 〉. (18)

In this way the operator equations (17) are transcribed to Schrödinger wavefunction equations
in the doubled space. For some systems of H,HR, V , equation (18) may be easily and
completely solved, or partly solved so that some physical information about the solution
can be obtained. Without loss of generality, we consider the model operator master
equation [4, 5]

dρ

dt
= (n̄ + 1)(2aρa† − a†aρ − ρa†a) + n̄(2a†ρa − aa†ρ − ρaa†)

+ M(2a†ρa† − a†a†ρ − ρa†a†) + M∗(2aρa − aaρ − ρaa) (19)

which describes a damped generalized harmonic oscillator. Usually, in the earlier literature
one used the coherent state and Glauber–Sudarshan P-representation to convert (19) into a
Fokker–Planck equation. Here we adopt a completely different approach, i.e. we introduce an
auxiliary freedom (tilde Bose operator and tilde states) to define a pure state. This state is just



New approach for solving master equations of density operators 6877

the complete and orthogonal thermal entangled state 〈η| which can make up a representative
space for the density matrix ρ operating on the state |I 〉. Setting

|ρ〉 = ρ|I 〉 (20)

we define a complex function f by

f = 〈η|ρ〉 (21)

where f contains all information on the density matrix of the physical system. Due to (6),
(11) and

〈η|ã = −
(

∂

∂η
+

η∗

2

)
〈η| 〈η|a =

(
∂

∂η∗ +
η

2

)
〈η| (22)

we have the rules

〈η|ã|ρ〉 = −
(

∂

∂η
+

η∗

2

)
f 〈η|a|ρ〉 =

(
∂

∂η∗ +
η

2

)
f

〈η|ã†|ρ〉 =
(

∂

∂η∗ − η

2

)
f 〈η|a†|ρ〉 = −

(
∂

∂η
− η∗

2

)
f

(23)

〈η|(a − ã†)|ρ〉 = ηf 〈η|(ã − a†)|ρ〉 = −η∗f (24)

〈η|(a†a − ã†ã)|ρ〉 = i
∂

∂ϕ
f. (25)

On the other hand, from (4) we also have

a|I 〉 = ã†|I 〉 a†|I 〉 = ã|I 〉 g(ã†, ã)ρ = ρg(ã†, ã) a†a|I 〉 = ã†ã|I 〉. (26)

By operating both sides of operators in (19) on the thermal state |I 〉, and using (26), we obtain
d

dt
|ρ〉 = {(n̄ + 1)(2aã − a†a − ã†ã) + n̄(2a†ã† − aa† − ãã†)

+ M(2a†ã − a†a† − ã2) + M∗(2aã† − aa − ã†2)}|ρ〉
= {(n̄ + 1)[(a − ã†)ã + (ã − a†)a] + n̄[(a† − ã)ã† + (ã† − a)a†]

+ M(a† − ã)2 + M∗(ã† − a)2}|ρ〉. (27)

Then multiplying both sides of (27) by the bra 〈η| from the left and using the eigenvector
equations (6) and (7), we obtain
d

dt
〈η|ρ〉 = (n̄ + 1)〈η|(ηã − η∗a)|ρ〉 + n̄〈η|(η∗ã† − ηa†)|ρ〉 − (Mη∗2 + M∗η2)〈η|ρ〉. (28)

Using the rules in equations (23) and (24), we can recast the first two terms on the right of
(28) to

〈η|{n̄[η(ã − a†) + η∗(ã† − a)] + (ηã − η∗a)}|ρ〉 =
[
−(2n̄ + 1)|η|2 − η

∂

∂η
− η∗ ∂

∂η∗

]
〈η|ρ〉.

(29)

Substituting (29) into (28), we obtain
d

dt
f =

[
−(2n̄ + 1)|η|2 − η

∂

∂η
− η∗ ∂

∂η∗ − Mη∗2 − M∗η2

]
f (30)

which can be easily connected to the Fokker–Planck equation. Thus our new approach is
feasible. One can see that the foregoing derivation is concise and direct, because most of the
time in the derivation we were using the eigenvector equation (7), and the rules of (23)–(25)
are easily handled. In the following section, we list some examples to show the advantage
of working in the 〈η| representation, i.e. solution to some c-number master equations can be
easily derived.
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3.1. Master equation for a damped harmonic oscillator driven by a resonant linear force

The master equation for a damped harmonic oscillator driven by a resonant linear force is

dρ

dt
= iλ[a + a†, ρ] +

g

2
(2aρa† − a†aρ − ρa†a). (31)

By operating the both sides of operators on the thermal state |I 〉,
d

dt
|ρ〉 =

[
iλ(a + a† − ã† − ã) +

g

2
(2aã − a†a − ã†ã)

]
|ρ〉 (32)

and then projecting equation (32) on 〈η| and using (24), we have

d

dt
〈η|ρ〉 = iλ(η∗ + η)〈η|ρ〉 +

g

2
〈η|(ηã − η∗a)|ρ〉. (33)

Using (23) and

∂

∂η
= 1

2
e−iϕ

(
∂

∂r
− i

r

∂

∂ϕ

)
∂

∂η∗ = 1

2
eiϕ

(
∂

∂r
+

i

r

∂

∂y

)
(34)

r ≡ |η| η
∂

∂η
+ η∗ ∂

∂η∗ = r
∂

∂r

we can further recast (33) into

d

dt
〈η|ρ〉 =

[
2iλr cos ϕ − g

2

(
r

∂

∂r
+ r2

)]
〈η|ρ〉. (35)

To search for its solution we factorize 〈η|ρ〉 = R(r)T (t) and substitute it into (35); the
result is

T ′

T
− 2iλ cos ϕ = −g

2

(
r
R′

R
+ r2

)
= −µ (36)

where µ is the variable-separation constant. From (36) we obtain

〈η|ρ〉 = r
2µ

g e−r2/2 e(2iλ cos ϕ−µ)t (37)

which involves some relaxation processes. Equation (33) is also convenient for discussing the
following particular case, i.e. when ρα = |α(t)〉〈α(t)|, |α〉 = D(α)|0〉 is a pure coherent state,
then aρα = α|α〉〈α|,

ã|ρ〉α = |α〉〈α|ã|I 〉 = |α〉〈α|a†|I 〉 = α∗|ρ〉α. (38)

Substituting (38) into (33) yields

d

dt
〈η|ρ〉α =

[
iλ(η∗ + η) +

g

2
(ηα∗(t) − η∗α(t))

]
〈η|ρ〉α. (39)

Especially, when α(t) = 2i λ
g
, α∗(t) = −2i λ

g
, (39) reduces to

d

dt
〈η|ρ〉α=2i λ

g
= 0 (40)

which shows that the pure steady state solution of (31) is the pure coherent state |α(t)〉〈α(t)| =∣∣2i λ
g

〉〈
2i λ

g

∣∣.
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3.2. Model for phase diffusion of a simple harmonic oscillator

Now we consider a model for phase diffusion of a simple harmonic oscillator described by the
following master equation:

dρ

dt
= −γ [a†a, [a†a, ρ]] = γ [2a†aρa†a − ρa†aa†a − a†aa†aρ]. (41)

By operating (41) on the thermal state |I 〉 and multiplying both sides by the bra 〈η| from the
left, we have

d

dt
|ρ〉 = γ

2
[2a†aã†ã − (ã†ã)2 − (a†a)2]|ρ〉 = −γ

2
(a†a − ã†ã)2|ρ〉. (42)

Using rule (25) we can reform equation (42) as

d

dt
〈η|ρ〉 = γ

2

∂2

∂ϕ2
〈η|ρ〉. (43)

This is a diffusion process of a phase. The solution should be a periodic function of ϕ with
period 2π that remains bounded at t → ∞, thus we choose a simple solution of the form

〈η|ρ〉 = e−γ t/2(A cos ϕ + B sin ϕ) (44)

where the constants A, B are to be determined by some boundary conditions. Alternately, we
can project (42) on 〈E, |η‖ and using (15) to obtain

d

dt
〈E, |η‖ρ〉 = −γ

2
〈E, |η‖(a†a − ã†ã)2|ρ〉 = −γ

2
E2〈E, |η‖ρ〉. (45)

Its solution is

〈E, |η‖ρ〉 = e−γE2t/2〈E, |η‖ρ(0)〉 (46)

which shows a rapid decay of amplitude when E is large. Equation (46) agrees with the result
of sandwiching (41) in between the number states 〈n| and |m〉
d

dt
〈n|ρ|m〉 = γ 〈n|[2a†aρa†a − ρa†aa†a − a†aa†aρ]|m〉 = γ 〈n|ρ|m〉(2nm − n2 − m2)

and

〈n|ρ|m〉 = e−(n−m)2γ t 〈n|ρ(0)|m〉. (47)

4. How to obtain ρ from 〈η|ρ〉
In this section, by taking a concrete example, we show how to recover density operator ρ from
〈η|ρ〉. This example is about the operator master equation:

dρ

dt
= A(2a†ρa − aa†ρ − ρaa†) + C(2aρa† − a†aρ − ρa†a). (48)

As is well known, this equation represents the laser theory in the lowest-order approximation,
where A is the gain and C is the cavity loss. According to (6) we have

d

dt
f = A〈η|(2a†ã† − aa† − ãã†)|ρ〉 + C〈η|(2aã − a†a − ã†ã)|ρ〉 (49)

where, due to (23) and (24),

〈η|(2aã − a†a − ã†ã) = 〈η|[(ã − a†)a + (a − ã†)ã]

=
[
−

(
η

∂

∂η
+ η∗ ∂

∂η∗

)
− ηη∗

]
〈η| (50)
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and

〈η|(2a†ã† − aa† − ãã†) = 〈η|[(ã† − a)a† + (a† − ã)ã†]

=
[(

η
∂

∂η
+ η∗ ∂

∂η∗

)
− ηη∗

]
〈η|. (51)

It then follows from (49)–(51) that

∂f

∂t
=

[
(A − C)r

∂

∂r
− (A + C)r2

]
f. (52)

The solutions to (52) is

f = 〈η|ρ〉 = r
σ

A−C exp

[
A + C

2(A − C)
r2 + σ t

]
. (53)

The steady state solution to equation (52) is

〈η|ρ〉 = exp

(
− r2

2

C + A

C − A

)
. (54)

To further obtain the density operator ρ , we multiply both sides of (54) by
∫ d2η

π
|η〉 from the

left and then employ the completeness relation of |η〉 and (5) to perform the integration

|ρ〉 =
∫

d2η

π
|η〉〈η|ρ〉 =

∫ ∞

0

r dr

π

∫
dϕ exp

[
− C

C − A
r2 + r(a† eiϕ − e−iϕã†) + a†ã†

]
|0, 0̃〉

=
∫ ∞

0

r dr

π
exp

(
− C

C − A
r2

)∮
dz

∑
n=0

(−rã†)n

in!zn+1
exp(ra†z)|I 〉

= 2
∫ ∞

0
r dr exp

(
− C

C − A
r2

) ∑
n=0

(−rã†)n

(n!)2
(ra†)n|I 〉

=
∑
n=0

(−)na†nan

(n!)2

∫ ∞

0
dr rn exp

(
− C

C − A
r

)
|I 〉

=
∑
n=0

(
1 − A

C

)n+1

:
(−a†a)n

n!
: |I 〉

=
(

1 − A

C

)
: exp

[(
A

C
− 1

)
a†a

]
: |I 〉 =

(
1 − A

C

)
exp

[
a†a ln

A

C

]
|I 〉 (55)

where in the fourth step we have used a|I 〉 = ã†|I 〉, and the symbol : : denotes normal
ordering. Then extracting the state |I 〉 from |ρ〉 = ρ|I 〉 and comparing with (55), we obtain
the density operator

ρ =
(

1 − A

C

)
exp

[
a†a ln

A

C

]
=

(
1 − A

C

) ∞∑
n=0

(A/C)n|n〉〈n| (56)

which obeys Trρ = 1. When the laser is below the threshold, A < C, by setting
A/C = e−h̄ω/KT , the photon distribution is

ρnn = (1 − e−h̄ω/KT ) e−nh̄ω/KT

which behaves as a chaotic state, thus the laser is possible only for A � C, namely, above
threshold. From this example, one can see the procedures of obtaining ρ from 〈η|ρ〉. In this
respect our formalism is different from the ordinary P-representation, Q-representation and
Wigner representation.
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Before completing this work we mention some other advantages of using the thermal
entangled state representation. (1) We can also apply 〈η|ρ〉 ≡ f to calculate thermal averages

〈A〉 = Tr(Aρ) =
∞∑
n

〈n|Aρ|n〉 =
∞∑
n,m

〈n, ñ|Aρ|m, m̃〉 = 〈I |Aρ|I 〉 = 〈I |A|ρ〉

=
∫

d2η

π
〈I |A|η〉〈η|ρ〉 (57)

where in the last step we have used the completeness relation (9). (2) We can also introduce
the conjugate state to |η〉, denoted as |ξ〉, defined as

|ξ〉 = exp
(− 1

2 |ξ |2 + ξa† + ξ∗ã† − a†ã†) |0, 0̃〉 (58)

satisfying the eigenvector equations

〈ξ |(a + ã†)|ρ〉 = ξ〈ξ |ρ〉 〈ξ |(ã + a†)|ρ〉 = ξ∗〈ξ |ρ〉 (59)

and the completeness relation∫
d2ξ

π
|ξ〉〈ξ | = 1. (60)

Since (59) is different from (24), one may use the |ξ〉 state to solve some other master equations
for other dynamic problems. (3) In the Fock space spanned by the number state |m, ñ〉, the
state |η〉 can be expanded as

|η〉 = e− 1
2 |η|2

∞∑
m,n=0

(−1)n√
m!n!

Hm,n(η, η∗)|m, ñ〉 (61)

where Hm,n is the two-variable Hermite polynomial, defined as [21]

Hm,n(η, η∗) =
min(m,n)∑

l=0

(−1)lm!n!

l!(m − l)!(n − l)!
ηm−lη∗n−l (62)

and we have used the generating function formula of Hm,n,

exp(−tt ′ + tη + t ′η∗) =
∞∑

m,n=0

tmt ′n

m!n!
Hm,n(η, η∗). (63)

Using equation (61) one can calculate function f from the knowledge of the density operator
in the Fock basis.

In summary, in this work based on TFD we have studied the structure of the quantum phase
space distributions by virtue of the thermal entangled state representation |η〉 and established
a new formalism for obtaining the corresponding c-number master equations, which are the
equations for 〈η|ρ〉 or 〈E, |η‖ρ〉. Because the state |η〉 possesses favourable properties (for
example, it is the common eigenvector of (a† − ã) and (ã† − a)), many master equations can
be converted into c-number equations much more easily. Moreover, the solutions of the new
equations in some cases can be easily derived. We have also shown how to extract ρ from 〈η|ρ〉.
The foregoing discussions presented a new approach for solving quantum master equations of
density operators which seems concise and convenient for some dynamical systems.
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